加拿大熊孩子育儿

加拿大多伦多大学《Science》:印度新冠病毒死亡率- 国家调查数据和卫生机构死亡

2022-2-11 09:33|发布者: 热点新闻|查看: 162|评论: 0

本社区内容来源自网友分享,我们无法界定来源的真实性与版权,如果有侵权行为请联系admin@bbbear.ca,我们将在核实后处理,感谢您的支持与理解!
放大 缩小

摘要:摘要 印度全国新冠病毒死亡总数尚未确定。使用独立的全国性代表性调查的14万(M)成人,我们比较了2020和2021个病毒波中的科威特死亡率与预期的全因死亡率。COVID构成从2020年6月到2021年7月死亡的29%(95%可信区 ... ...






摘要

   

    印度全国新冠病毒死亡总数尚未确定。使用独立的全国性代表性调查的14万(M)成人,我们比较了2020和2021个病毒波中的科威特死亡率与预期的全因死亡率。COVID构成从2020年6月到2021年7月死亡的29%(95%可信区间,28至31%),对应于3.2 M(3.1至3.4)死亡,其中2.7 M(2.6至2.9)发生在四月至2021年7月(当COVID加倍全因死亡率)。一项对57000名成年人的二次调查显示,死亡率在时间上有类似的增加,新冠病毒和非新冠病毒的死亡率达到了类似的峰值。两个政府数据来源发现,与安第斯山脉前时期相比,10个州的020万卫生设施的全因死亡率高27%(23%至32%),民事登记死亡高26%(21%至31%);两种增加主要发生在2021。分析发现,印度2021年9月累计死亡人数比官方公布的高出六至七倍。

India’s national COVID death totals remain undetermined. Using an independent nationally representative survey of 0.14 million (M) adults, we compared COVID mortality during the 2020 and 2021 viral waves to expected all-cause mortality. COVID constituted 29% (95% confidence interval, 28 to 31%) of deaths from June 2020 to July 2021, corresponding to 3.2 M (3.1 to 3.4) deaths, of which 2.7 M (2.6 to 2.9) occurred in April to July 2021 (when COVID doubled all-cause mortality). A subsurvey of 57,000 adults showed similar temporal increases in mortality, with COVID and non-COVID deaths peaking similarly. Two government data sources found that, when compared to prepandemic periods, all-cause mortality was 27% (23 to 32%) higher in 0.2 M health facilities and 26% (21 to 31%) higher in civil registration deaths in 10 states; both increases occurred mostly in 2021. The analyses find that India’s cumulative COVID deaths by September 2021 were six to seven times higher than reported officially.

截至2022年1月1日,在Omicron变种引发的当前激增之前,印度报告了超过3500万例严重急性呼吸综合征冠状病毒2型(SARS-CoV-2),仅次于美国(1)。印度官方的累计新冠病毒死亡人数为48万,这意味着每百万人口的新冠病毒死亡率约为345,约为美国死亡率的七分之一(2)。印度报告的新冠病毒死亡总数普遍被认为是漏报的,因为新冠病毒死亡的证明不完整,并被错误地归因于慢性病,而且大多数死亡发生在农村地区,通常没有医疗护理(3,4)。联合国人口司(UNPD)估计,2020年印度有1000万人死亡,其中300多万人没有登记,800多万人没有接受医疗认证(图S1和表S1)。

As of 1 January 2022 and prior to the current surge driven by the Omicron variant, India reported over 35 million cases of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), second only to the United States (1). India’s official cumulative COVID death count of 0.48 million implies a COVID death rate of ~345 per million population, about one-seventh of the US death rate (2). India’s reported COVID death totals are widely believed to be underreports because of incomplete certification of COVID deaths and misattribution to chronic diseases and because most deaths occur in rural areas, often without medical attention (3, 4). Of India’s 10 million deaths estimated by the United Nations Population Division (UNPD) in 2020, over 3 million were not registered and over 8 million did not undergo medical certification (fig. S1 and table S1).

基于模型的累积死亡人数估计在2021年6月印度在从几十万到400万以上,大多数建议大量官方的胡伯爵(5 - 12)(表S2)。然而,模型从官方报告开始,并应用不同的假设,导致广泛或不可信的估计。由于缺乏近乎普遍和及时的死亡登记,以及印度样本登记系统(SRS)没有发布数据,该系统对大约1%的印度家庭(13)进行随机抽样,因此需要其他方法来估计新冠病毒死亡。在大流行传播高峰期间,全因死亡率的增加几乎都是由新冠病毒感染引起的(14)。世界卫生组织(WHO)已经认识到这种计数是追踪大流行的一种粗糙但有用的方法(15)。记者和非政府组织使用民事登记系统(CRS)数据进行的报告表明,与前几年相比,各种原因造成的死亡人数大幅增加(16)。不幸的是,CRS数据仅在覆盖印度估计总死亡人数约一半的州可靠可用,并且可能会受到登记水平变化的影响。鉴于确诊的新冠病毒死亡病例和各州死亡病例的时间模式存在明显的异质性(17),以及受新冠病毒感染影响的慢性病死亡率的可变背景(3),从选定的州进行推断有其局限性。

Model-based estimates of cumulative COVID deaths through June 2021 in India range from a few hundred thousand to more than 4 million, with most suggesting a substantial official undercount (5–12) (table S2). However, models start with official reports and apply varying assumptions, leading to wide or implausible estimates. In the absence of near universal and timely death registration and the lack of release of data from India’s Sample Registration System (SRS), which tracks deaths in a random sample of about 1% of Indian homes (13), alternative approaches are needed to estimate COVID deaths. Recorded increases in all-cause mortality during peak pandemic transmission are likely nearly all caused by COVID infection (14). The World Health Organization (WHO) has recognized such counts as a crude but useful method to track the pandemic (15). Reports by journalists and nongovernmental organizations using civil registration system (CRS) data have documented a large increase in deaths from all causes compared with previous years (16). Unfortunately, CRS data are reliably available only in states that cover about half of the estimated total deaths in India and may be affected by changes in the level of registration. Given the marked heterogeneity in the temporal patterns of confirmed COVID mortality cases and deaths across states (17), and the variable background of mortality rates from chronic diseases affected by COVID infection (3), extrapolating from selected states has its limitations.

为了填补国家层面估计的空白,我们使用一个独立的数据源和两个政府数据源对印度的新冠病毒死亡率进行了量化。第一项研究是由CVoter进行的具有全国代表性的电话调查中报告的死亡率。CVoter是一家成立的独立私人民调机构,它在非营利基础上发起了这项调查,以帮助追踪大流行[见材料和方法,第2页(18)]。新冠病毒追踪调查覆盖14万成年人(包括13500个家庭中57000人的子研究,更准确地报告了直系亲属中的新冠病毒和非新冠病毒死亡情况)(18,19)。此外,我们研究了印度政府在10个州的国家设施死亡和CRS死亡的行政数据(图S2)。

To fill the gaps in national-level estimates, we quantified COVID mortality in India using one independent and two government data sources. The first study is mortality reported in a nationally representative telephone survey conducted by CVoter, an established, independent, private polling agency, which launched the survey on a nonprofit basis to help track the pandemic [see materials and methods, p. 2 (18)]. The COVID Tracker survey covers 0.14 million adults (including a substudy of 57,000 people in 13,500 households with more exact reporting of COVID and non-COVID deaths in immediate family members) (18, 19). In addition, we studied the Government of India’s administrative data on national facility-based deaths and CRS deaths in 10 states (fig. S2).

CVoter Tracker调查是一项具有全国代表性、基于随机概率的计算机辅助电话采访调查,每天进行一次,以跟踪治理、媒体和其他社会经济指标(19)。2020年3月,它开始在18岁或18岁以上的成年人中捕捉新冠病毒症状,每周从全国约4000个地方选区随机抽取约2100名受访者,提供新冠病毒症状和死亡的7天滚动平均值。这项调查覆盖了超过98%的印度人口(按地理位置划分),并用11种语言进行了采访。有效率为55%;所有国家和联盟领土的137289名受访者在2020年3月至2021年7月接受了采访。

The CVoter Tracker survey is a nationally representative, random probability-based computer-assisted telephone interview survey carried out daily to track governance, media, and other socioeconomic indicators (19). In March 2020, it began to capture COVID symptoms among adults aged 18 years or older, covering ~2100 randomly selected respondents weekly, drawn from ~4000 local electoral areas in the whole of the country, providing a rolling 7-day average of COVID symptoms and deaths. The survey covers >98% of Indian population by geography, with interviews in 11 languages. The response rate was 55%; 137,289 respondents in all states and union territories were interviewed from March 2020 to July 2021.

我们的分子被定义为报告新冠病毒死亡的受调查家庭每周的平均百分比(由家庭定义,因为医学证明在印度仍然不常见;图S1)。我们排除了年龄在35岁以下的16%已报告的新冠病毒死亡(确诊的年龄在35岁以下的新冠病毒死亡是罕见的;图S3),并减去0.59%的固定百分比,这是未发生在直系亲属中的已报告死亡的假设值。假设值取自二月至2021年3月期间观察到的背景率,在官方政府数据中很少报告科威特病例或死亡病例(见材料和方法,第3页)。使用调查权重或原始比例的结果相似,因此我们使用了后者。我们将这些调查报告的新冠病毒死亡与分母进行了比较,分母定义为全因死亡的预期每周百分比,基于UNPD综合人口统计估计的2020年死亡总数,结合人口普查、调查数据和模型(20)(图1)。2020年,印度约有2.96亿户家庭,平均家庭规模为4.6(21)。将这一数字除以联合国人口与发展部2020年在印度估计的1016万死亡人数,预计该年有约3.4%的家庭报告死于任何原因(2021年的结果几乎相同)。对于这一预期的全因比例,我们采用了百万死亡研究中观察到的每周变化,这是SRS中进行的一项具有代表性的大型死亡率研究(3)。

Our numerator was defined as the average weekly percentages of surveyed households reporting a COVID death (defined by the household, as medical certification remains uncommon in India; fig. S1). We excluded the 16% of reported COVID deaths that were below age 35 years (confirmed COVID deaths below this age are infrequent; fig. S3) and subtracted a fixed percentage of 0.59%, which was an assumed value for reported deaths that did not occur among immediate family members. The assumed value drew on observed background rates during February–March 2021, when few COVID cases or deaths were reported in the official government data (see materials and methods, p. 3). Results using survey weights or raw proportions were similar, so we used the latter. We compared these survey-reported COVID deaths to a denominator defined as the expected weekly percentage for all-cause deaths, based on 2020 death totals from the UNPD’s comprehensive demographic estimates that combine censuses, survey data, and models (20) (Fig. 1). India had about 296 million households in 2020, with an average household size of 4.6 (21). Dividing this into the 10.16 million deaths estimated by the UNPD in India in 2020 yields ~3.4% of households expected to report a death from any cause in that year (with nearly identical results for 2021). To this expected all-cause proportion, we applied the weekly variation observed in the Million Death Study, a large and representative mortality study conducted within the SRS (3).



更多详细内容,可“阅读原文”。

原文链接:

https://www.science.org/doi/10.1126/science.abm5154

end


关注《今日论文》公众号:




微信号 : Article-CN

            投稿:

nschina@vip.163.com


联系我们:nschina@vip.163.com

路过

雷人

握手

鲜花

鸡蛋
分享到微博 收藏 分享 邀请

最新评论

推荐阅读

返回顶部